

§16.9 Divergence Theorem:

Statement:

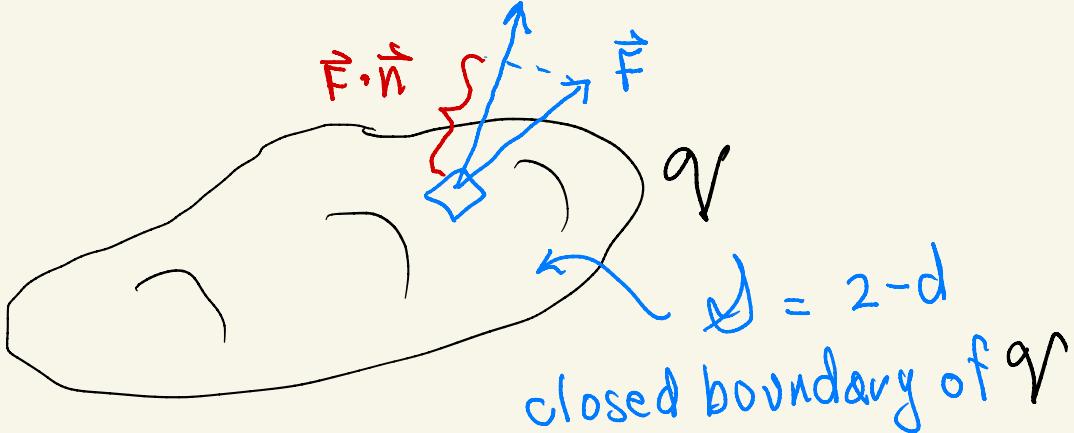
$$\iiint_V \operatorname{Div} \vec{F} \, dV = \iint_S \vec{F} \cdot \vec{n} \, dS$$

The Ch 15 triple integral of $\operatorname{Div} \vec{F}$ over a 3-d vol \mathcal{V}

The Flux of \vec{F} through the boundary S of \mathcal{V}

$$\vec{F} = (M_x, N_y, P_z) \quad \operatorname{Div} \vec{F} = M_x + N_y + P_z$$

Picture:



In words: "the integral of $\operatorname{Div} \vec{F}$ over a volume \mathcal{V} is always equal to the flux of \vec{F} through the boundary"

Recall: In the fluid model $\vec{F} = \rho \vec{V}$ = mass flux vector, $\iint_S \vec{F} \cdot \vec{n} \, dS = \frac{\text{mass}}{\text{time}} \frac{\text{outward}}{\text{thru } S}$

Example: Use the Divergence Theorem to give a physical interpretation to $\operatorname{Div} \vec{F}$.

That is, we can compute $\operatorname{Div} \vec{F}$ at each point

$$P = \vec{x} = (x, y, z) \text{ as } \operatorname{Div} \vec{F}(\vec{x}) = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$$

Q: What does $\operatorname{Div} \vec{F}$ measure?

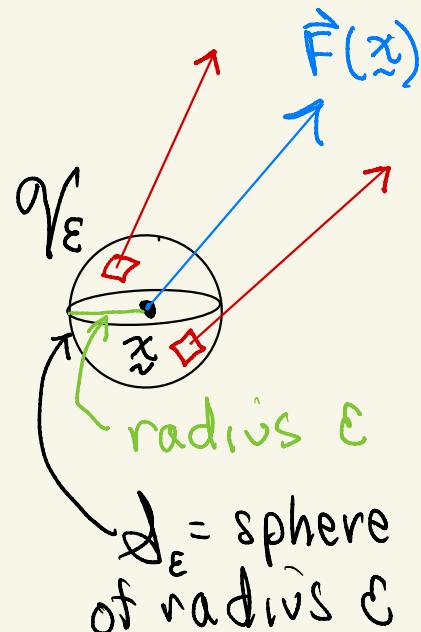
A number (computed at each point \vec{x})

Ans: $\operatorname{Div} \vec{F}$ measures "Flux per Volume"

To see this, take a small ball \mathcal{V}_ϵ of radius ϵ centered at \vec{x} .

Apply the Divergence Thm:

$$\iiint_{\mathcal{V}_\epsilon} \operatorname{Div} \vec{F} \, dV = \iint_{\mathcal{S}_\epsilon} \vec{F} \cdot \vec{n} \, dS$$



The trick: If ϵ is sufficiently small, and \vec{F} and its derivatives are continuous, then the value of $\operatorname{Div} \vec{F} \approx \operatorname{Div} \vec{F}(\vec{x})$ throughout \mathcal{V}_ϵ

That is:

$$\begin{aligned}
 \iiint_{V_\epsilon} \operatorname{Div} \vec{F} dV &= \iiint_{V_\epsilon} \operatorname{Div} \vec{F}(\vec{x}) dV + \text{error} \\
 &\quad \uparrow \quad \uparrow \\
 &\quad \text{center} \quad \text{smaller than} \\
 &\quad \text{point} \quad |V_\epsilon| = \text{Vol } V_\epsilon \\
 &= \operatorname{Div} \vec{F}(\vec{x}) \iiint_{V_\epsilon} dV + \text{error} \\
 &\quad \uparrow \\
 &\quad |V_\epsilon| = \text{Vol of } V_\epsilon \\
 &= |V_\epsilon| \operatorname{Div} \vec{F}(\vec{x}) + \text{error.}
 \end{aligned}$$

Solving for $\operatorname{Div} \vec{F}(\vec{x})$ gives:

$$\operatorname{Div} \vec{F}(\vec{x}) = \frac{1}{|V_\epsilon|} \iint_{S_\epsilon} \vec{F} \cdot \vec{n} dS + \underbrace{\frac{\text{error}}{|V_\epsilon|}}_{\text{tends to 0 as } \epsilon \rightarrow 0}$$

Conclude: $\operatorname{Div} \vec{F}(\vec{x}) = \lim_{\epsilon \rightarrow 0} \frac{1}{|V_\epsilon|} \iint_{S_\epsilon} \vec{F} \cdot \vec{n} dS$

= "Flux of \vec{F} per Volume"

Note: This works for any volume $V_\epsilon = \epsilon V_0$
so it scales w ϵ

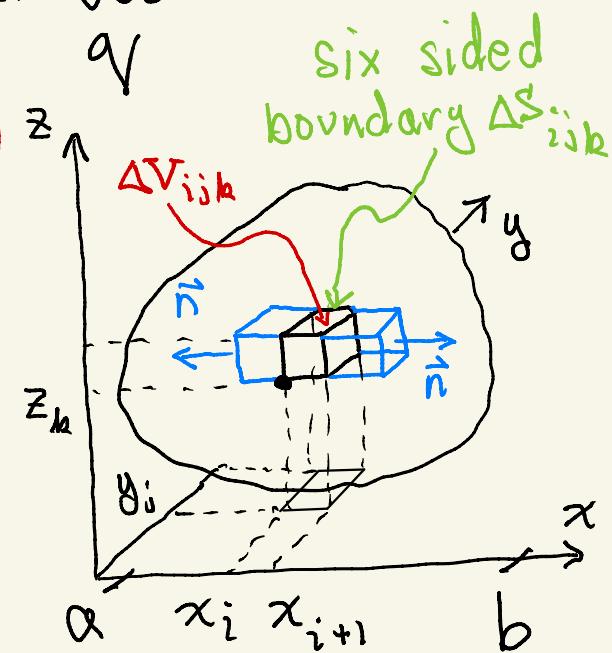
(4)

Example: The fact that $\text{Div} \vec{F} = \frac{\text{Flux}}{\text{vol}}$ explains why the Divergence Theorem is true:

I.e. Approximate triple integral $\iiint_V \text{Div} \vec{F} dV$ as a Riemann Sum:

$$\iiint_V \text{Div} \vec{F} dV \approx \sum_{i,j,k} \text{Div} \vec{F}_{ijk} \Delta V$$

$$\approx \sum_{ijk} \frac{\iiint \vec{F} \cdot \vec{n} dS}{\Delta S_{ijk}} \Delta V$$



$$= \sum_{ijk} \frac{\iiint \vec{F} \cdot \vec{n} dS}{\Delta S_{ijk}} \Delta S_{ijk}$$

$$\approx \iint_S \vec{F} \cdot \vec{n} dS$$

The flux integral cancels on all shared sides as outer normal switches sign \oplus

only the outer sides on the boundary of ∂V have no adjacent boundary to cancel them \oplus

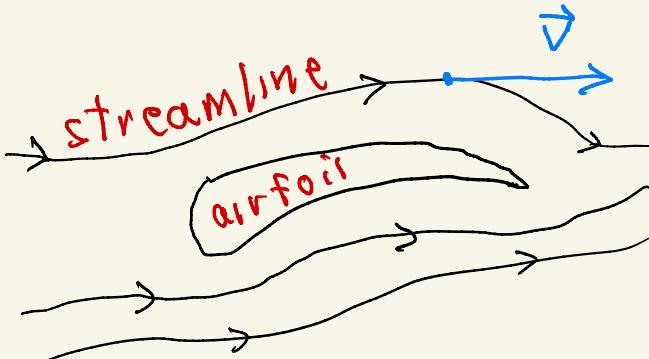
Example: The most important application of the Divergence Theorem -

Assume $\vec{F} = \nabla \vec{v}$ in the fluid model where

$$\nabla(x, y, z) = \frac{\text{mass}}{\text{vol}}$$

and

$$\vec{v}(x, y, z) = \text{velocity}$$



Q: What constraint must ∇ and \vec{v} satisfy to ensure that mass is conserved?

Ans: $\text{Div } \nabla \vec{v} = 0$ Intuitively, $\text{Div } \nabla \vec{v}(x) = \frac{\text{Flux}}{\text{vol}}$ at x , so if $\text{Div } \nabla \vec{v}(x) \neq 0$, mass is either created or destroyed at x . We get a careful argument by DivThm

the idea - if mass is conserved in every

volume \mathcal{V} , then we must have that flux of mass thru the boundary of \mathcal{V} must $= 0 \dots$

otherwise mass would be accumulating in \mathcal{V} .

So Conservation of Mass $\Rightarrow \iint_S \vec{F} \cdot \vec{n} dS = 0$ for all S

Defn.: We say **conservation of mass** holds 6
 if $\iint_{\partial V} \vec{F} \cdot \vec{n} dS = 0$ for the boundary of
 &
 any 3-d surface V . Now apply Div. Thm

$$\text{Div Thm: } \iiint_V \text{Div} \vec{F} dV = \iint_{\partial V} \vec{F} \cdot \vec{n} dS = 0$$

This implies $\text{Div} \vec{F} = 0$. If $\text{div} \vec{F}(\vec{x}) = 0$ at

a point, then choose a small volume V_ϵ in which
 $\text{div} \vec{F}$ has same sign as $\text{Div} \vec{F}(\vec{x})$, say positive,

then

$$\iiint_{V_\epsilon} \text{Div} \vec{F} dV > 0 \quad \cancel{\text{X}}$$

pos

Conclude: the condition for Conservation of Mass

is:

$$\text{Div} \vec{S} \vec{V} = 0$$

Continuity
Equation

- For time dependent flows, same idea

$$\delta(x, y, z, t), \vec{v}(x, y, z, t)$$

Then Conservation of mass is

$$\delta_t + \operatorname{Div}(\delta \vec{v}) = 0$$

Continuity
Equation

$$\operatorname{Div}_{t, x}(\delta, \delta \vec{v}) = 0$$

The continuity equation is the first partial differential equation of fluid mechanics. For example, the continuum version of Newton's Law is expresses conservation of mass (*) together with an equation for conservation of momentum and conservation of energy, both of which can be derived from the Divergence Theorem. Note that (*) is NONLINEAR! The equations for Fluids are "Fiercely Nonlinear"